Construcción de modelos con datos
En gran parte, las decisiones administrativas se basan en la evaluación e interpretación de datos. Sin embargo, los datos sólo pueden ser interpretados a través del lente de un marco de referencia conceptual. Es difícil determinar qué fue primero: el marco o la recopilación de datos.
Por supuesto que se requieren datos para construir modelos eficaces. Los esfuerzos para mejorar la construcción de modelos suelen conducir a la adquisición y compilación de más información o de nuevos tipos de datos. La existencia de éstos incrementa el beneficio potencial del uso de un modelo. C. West Churchman, uno de los primeros partidarios del uso de modelos en la administración, ha dicho que en realidad no existen datos «brutos«, pues el acto de reunir y tabular esos números refleja siempre las tendencias que se tienen respecto a un marco de referencia determinado, es decir, de un modelo (mental).
Sin embargo, una de las características de la civilización avanzada, por lo menos en lo que se refiere a la tecnología, parece ser la adquisición y el uso simultáneos de datos y modelos.
Los modelos simbólicos brindan una forma de evaluar e interpretar datos de manera sistemática y con más atención a los detalles, de lo que es posible con los modelos mentales. Los modelos simbólicos pueden usarse también para generar datos, y éstos suelen ser necesarios para construir modelos (por ejemplo, para estimar los parámetros del modelo).
De hecho, no es raro que el éxito o el fracaso de un intento por construir modelos se relacione con la disponibilidad, precisión y relevancia de los datos. En la construcción y uso práctico de modelos administrativos hay que prestar mucha atención al tema de los datos. Por ejemplo, un modelo que requiera datos detallados puede resultar inútil si no se dispone de tales datos o si la recolección de los mismos es costosa y demasiado lenta.
En esta sección presentamos algunas consideraciones pertinentes para el uso de datos en la construcción de modelos. El escenario para esta exposición y otras incluidas en el libro es una firma hipotética llamada PROTRAC.
Establecida en el oeste medio de Estados Unidos, PROTRAC produce más de 200 artículos que abarcan maquinaria agrícola, maquinaria industrial y para la construcción, productos químicos y equipo para huerto y jardín. Su principal fuente de ingresos es la venta de máquinas-herramienta para agricultura, con strucción, silvicultura, conformación de terrenos y manejo de materiales.
Estos productos se elaboran en 14 fábricas, la mayoría de las cuales están localiza-das en Estados Unidos, y se venden en todo el mundo.
Las decisiones de PROTRAC se basan en gran medida en la información disponible, es decir, en la evaluación e interpretación de datos. Antes dijimos que, desde el punto de vista de la construcción de modelos, las decisiones recomendadas por medio de ellos se expresan como un número, que representa tal vez un precio o la cantidad de artículos que es preciso vender.
Tenga muy presente esta definición. También queremos que capte con mucha claridad lo que entendemos por datos. Para nuestros fines, la palabra datos significa también números.
Para apreciar la íntima relación entre números y modelos, supongamos que la gerencia de PROTRAC debe tomar una decisión sobre el monto de dinero que debe asignar a su mercadotecnia en Europa. Antes de tomar tal decisión, la gerencia desea tener una idea del efecto que dicha asignación produciría en el total de las ventas europeas.
Con ese propósito, una funcionaria ejecutiva consultó la base de datos de la corporación para obtener información sobre los gastos de mercadotecnia y el total de ingresos por concepto de ventas en Europa durante un periodo de 12 años, después de lo cual introdujo dichos datos a su hoja de cálculo Excel, como muestra la f igura 1.5.
Esta hoja de cálculo no es más que un medio para comunicar los datos requeridos. Se ha elegido ese formato para la tabla por simple comodidad; es importante señalar que su propósito no consiste en sugerir relaciones especiales entre los distintos números. Sin embargo, supongamos que después de haber estudiado los datos de la figura 1.5, la ejecutiva supone o establece la hipótesis de cierta relación entre los gastos de mercadotecnia y las ventas.
Ella puede considerar, por ejemplo, que el ingreso total por la venta de su producto en un año determinado depende directamente sólo de los gastos de mercadotecnia en ese año, y no de los ingresos por ventas o los gastos de mercadotecnia en años anteriores. Dicho de otro modo, ella cree que el ingreso total por concepto de ventas es independiente del tiempo. (Las palabras depende directamente implican que un gasto mayor en mercadotecnia se traduce en ventas más altas.)
Así, la ejecutiva puede estimar que las ventas por $1.8 millones en 1992 sólo estuvieron relacionadas en forma significativa con los $400,000 gastados en mercadotecnia durante ese mismo año. En forma alternativa, la funcionaria podría considerar que las ventas de 1992 se relacionaron más bien con los gastos de mercadotecnia en 1989. 0 bien, puede elaborar la hipótesis de que las ventas de 1992 dependieron por igual de los gastos de mercadotecnia en 1989, 1990 y 1991.
Podríamos elaborar hipótesis sobre muchas relaciones posibles. Es obvio que las relaciones apropiadas dependerían de muchos factores asociados con el ambiente real de PROTRAC: Además, hemos expresado las relaciones de nuestra hipótesis en términos vagos, parcialmente cuantitativos. Es decir, dijimos en forma hipotética que las ventas de 1992 dependieron directa-mente de los gastos de mercadotecnia correspondientes a ese año, pero nuestra hipótesis no incluyó una relación cuantitativa específica.
Podríamos hacer una declaración cuantitativa específica: las ventas reales en 1992 fueron 4.5 veces mayores que el gasto en mercadotecnia durante el mismo año. Esto significa que en 1992 se obtuvieron, en promedio, 4.5 dólares de ventas por cada dólar de mercadotecnia. Sin embargo, este hecho por sí mismo, no nos permite concluir que un gasto de $600,000 en 1992 hubiera conducido aun nivel de ventas de $2.7 millones. Además, ¿realmente el factor de proporcionalidad de 1992 tiene alguna importancia para la decisión actual? En 1997, por ejemplo, el factor de proporcionalidad fue 4.0, no 4.5. ¿Qué relación existe entre los datos de 1997 y los de 1992? ¿Las actuales técnicas de mercadotecnia de PROTRAC son más semejantes a las de 1997 que a las de 1992? ¿O la operación ha permanecido básica-mente igual entre 1992 y 1997?
¿Y qué podemos decir de otros factores relevantes, como las condiciones económicas en general? Si establecemos la hipótesis de una relación causal entre la mercadotecnia y las ventas de cada año, entonces los datos revelan que, en promedio, cada dólar gastado en mercadotecnia fue más efectivo en 1992 que en 19 97. ¿Qué factores del mundo real nos permitirían explicar esos diferentes grados de eficacia en los distintos años? Es decir, ¿cuáles de las interacciones del mundo real están r eflejadas en esos datos? Tal vez se trate de diferencias en las técnicas de publicidad, o diferencias graduales del mercado y la demanda, lo cual, a su vez, podría deberse a diferentes condiciones económicas, al clima o a políticas del gobierno.
Como gerente, usted debe considerar ese tipo de preguntas en cuanto empiece a interpretar los datos de la tabla. Pero el objeto de la exposición actual es éste: en cuanto usted empieza a establecer hipótesis sobre cualquier relación entre sus datos, inicia la formulación de la(s) ecuación(es) de un modelo.
Es decir, ya está empezando a interpretar los datos como un reflejo de importantes relaciones subyacentes. Por tanto, la figura 1.5 tiene un significado especial: se ha convertido en una representación selectiva de la realidad. Como tal, una simple tabla de datos encaja en nuestra definición anterior de modelo. Es importante subrayar que, por sí mismos, los datos no representan un modelo. Aislados, los números no significan más que un registro de hechos (p. ej., el ingreso total por concepto de ventas en Europa fue de $1.8 millones en 1992). Sólo cuando se adscribe cierta relación a los números es cuando empieza a existir un modelo, por lo menos en forma embrionaria.
Fuente: Apuntes de Investigación de operaciones de la UNIDEG