Espectroscopia

La espectroscopia (también pronunciada espectroscopía en algunas zonas) es una técnica analítica experimental, muy usada en química y en física. Se basa en detectar la absorción de radiación electromagnética de ciertas energías, y relacionar estas energías con los niveles de energía implicados en la transición cuántica. De esta forma, se pueden hacer análisis cuantitativos o cualitativos de una enorme variedad de sustancias.

Origen

La luz visible es físicamente idéntica a todas las radiaciones electromagnéticas. Es visible para nosotros porque nuestros ojos evolucionaron para detectar esta estrecha banda de radiación del espectro electromagnético completo. Esta banda es la radiación dominante que emite nuestro Sol.

Desde la antigüedad, científicos y filósofos han especulado sobre la naturaleza de la luz. Nuestra comprensión moderna de la luz comenzó con el experimento del prisma de Isaac Newton, con el que comprobó que cualquier haz incidente de luz blanca no necesariamente, procedente del Sol, se descompone en el espectro del arcoiris (del rojo al violeta). Newton tuvo que esforzarse en demostrar que los colores no eran introducidos por el prisma, si no que realmente eran los constituyentes de la luz blanca. Posteriormente, se pudo comprobar que cada color correspondía a un único intervalo de frecuencias o longitudes de onda.

En los siglos XVIII y XIX, el prisma usado para descomponer la luz fue reforzado con rendijas y lentes telescópicas con lo que se consiguió así una herramienta más potente y precisa para examinar la luz procedente de distintas fuentes. Fraunhofer utilizó este espectroscopio inicial para descubrir que el espectro de la luz solar estaba dividido por una serie de líneas oscuras, cuyas longitudes de onda se calcularon con extremo cuidado. Por el contrario, la luz generada en laboratorio mediante el calentamiento de gases, metales y sales mostraba una serie de líneas estrechas, coloreadas y brillantes sobre un fondo oscuro. La longitud de onda de cada una de estas bandas era característica del elemento químico que había sido calentado. Por entonces, surgió la idea de utilizar estos espectros como huella digital de los elementos observados. A partir de ese momento, se desarrolló una verdadera industria dedicada exclusivamente a la realización de espectros de todos los elementos y compuestos conocidos.

También se descubrió que si se calentaba un elemento lo suficiente (incandescente), producía luz blanca continua, un espectro completo de todos los colores, sin ningún tipo de línea o banda oscura en su espectro. En poco tiempo llegó el progreso: se pasó la luz incadescente de espectro continuo por una fina película de un elemento químico elegido que estaba a temperatura menor. El espectro resultante tenía líneas oscuras, idénticas a las que aparecían en el espectro solar, precisamente en las frecuencias donde el elemento químico particular producía sus líneas brillantes cuando se calentaba. Es decir, cada elemento emite y absorbe luz a ciertas frecuencias fijas características del mismo.

Las líneas oscuras de Fraunhofer, que aparecían en el espectro solar, son el resultado de la absorción de ciertas frecuencias características (que forman parte del espectro continuo de luz emitido por el interior del Sol, mucho más caliente) por los elementos químicos presentes en las capas más exteriores de nuestra estrella. Aún había dudas: en 1878, en el espectro solar se detectaron líneas que no casaban con las de ningún elemento conocido. De ello, los astrónomos predijeron la existencia de un elemento nuevo, llamado helio. En 1895 se descubrió el helio terrestre.

De igual forma que la teoría universal de la gravitación de Newton probó que se pueden aplicar las mismas leyes tanto en la superficie de la Tierra como para definir las órbitas de los planetas, la espectroscopia demostró que existen los mismos elementos químicos tanto en la Tierra como en el resto del Universo.