Clasificación estelar

Las estrellas pueden clasificarse a partir de la temperatura efectiva de sus fotosferas siguiendo la ley de Wien. Esta tarea se complica en el caso de estrellas distantes. La espectroscopía estelar permite entonces una mejor clasificación atendiendo a sus líneas de absorción. Una clasificación inicial se formuló en el siglo XIX organizando las estrellas en tipos espectrales de la A a la P, siendo este el origen de los modernos tipos espectrales.

Clasificación según magnitudes

Este sistema de clasificación proviene originalmente del astrónomo griego Hiparco, quién en el año 134 AC había clasificado las estrellas en seis magnitudes de acuerdo con su brillo. Hiparco asignó la magnitud 1 a las 20 estrellas más brillantes del firmamento y fue asignando valores mayores a estrellas cada vez más débiles hasta asignar la magnitud 6 a estrellas apenas visibles a simple vista. Este esquema fue adoptado posteriormente por el astrónomo egipcio Ptolomeo y transmitido en la tradición astronómica occidental.

Actualmente la clasificación por magnitudes aparentes es más bien complementaria a los dos grandes tipos de clasificación: el de tipo espectral y el de clases de luminosidad.

Clasificación por tipos espectrales

Esta clasificación estelar es la más utilizada en astronomía. Las diferentes clases se enumeran de las más cálidas a frías. Son las siguientes:

 

ClaseTemperaturaColor
O30.000 – 60.000 KAzul
B10.000 – 30.000 KAzul-Blanco
A7.500 – 10.000 KBlanco
F6.000 – 7.500 KAmarillo-Blanco
G5.000 – 6.000 KAmarillo (como el Sol)
K3.500 – 5.000 KAmarillo-naranja
M2.000 – 3.500 KRojo

Las diferentes clases se dividen posteriormente siguiendo números arábicos del 0 al 9. A0 especifica las estrellas más calientes de la clase A, mientras que A9 se refiere a las más frías. Por ejemplo, el Sol es una estrella de tipo G2. Esta clasificación se completa con los tipos R, N y S. El diagrama Hertzsprung-Russell relaciona la clasificación espectral con la magnitud absoluta, luminosidad y temperatura superficial de las estrellas. Existe una regla mnemotécnica para recordar la secuencia, consistente en una frase en inglés cuyas palabras empiezan por esas letras: Oh Be A Fine Girl/Guy/Gay, Kiss Me Right Now Sweetly. También existe una regla mnemotécnica en castellano: Otros Buenos Astrónomos Fueron Galileo, Kepler, Messier. Y otra más, introducida hace tiempo por los jesuitas: «Oh, Bienaventurados Aquellos Feligreses, Gimió Krispín Mientras Regaba Nuestros Sauces».

Catálogo Henry Draper

Esta clasificación espectral surgió de los trabajos iniciados a comienzos del siglo XX por Henry Draper en el Harvard College Observatory. Draper pretendía establecer una clasificación estelar en tipos utilizando la intensidad de las líneas de Balmer del hidrógeno. Tras su muerte, su viuda consiguió reunir una importante cantidad de dinero que donó al observatorio para continuar los trabajos de clasificación. Éstos fueron realizados por Williamnia Fleming (1857-1910) quién clasificó más de 10.000 estrellas y supervisó los trabajos del personal femenino del Observatorio, dedicado a tal tarea. El catálogo fue publicado finalmente en 1918 y recibió el nombre de Catálogo Henry Draper. Un catálogo expandido y revisado fue publicado en 1924 realizado por Annie Jump Cannon quién clasificó los espectros de más de 250.000 estrellas y que incluía estrellas de hasta la 9ª magnitud.

Orden de la secuencia

Pronto resulta evidente el orden curioso en el que se disponen los tipos espectrales. La clasificación de Harvard de tipos espectrales estaba basada en la intensidad de las líneas de absorción de la serie de Balmer que son sensibles a la temperatura de la estrella. Estas líneas son las más prominentes del espectro en la mayor parte de las estrellas visibles. A las estrellas con líneas más intensas se les dio el nombre de clase espectral A, las siguientes en intensidad B y así hasta la P (líneas más débiles). Otras líneas de especies neutrales e ionizadas comenzaron a ser estudiadas (líneas H y K del calcio, líneas del sodio, etc). Se descubrió que parte de las clases utilizadas en la época estaban duplicadas y estas clases fueron retiradas. Después se descubrió que el orden en el que se habían establecido las clases era erróneo y también que finalmente era necesario incluir algunos de los tipos que habían sido retirados.

Por otro lado, la gravedad de la estrella desempeña un papel menor en la formación de estas líneas.

Tipos espectrales clásicos

  • Clase O: Son estrellas muy calientes y luminosas destacando en brillantes colores azules. Naos (en la constelación de Puppis) brilla con una potencia cercana a un millón de veces superior a la del Sol. Estas estrellas tienen líneas de helio ionizado y neutro muy prominentes y presentan líneas débiles de Balmer de hidrógeno. Emiten la mayor parte de su radiación en el ultravioleta.
  • Clase B: Extremadamente luminosas, como Rigel en Orión, una supergigante azul. Los espectros de estas estrellas tienen líneas de helio neutral y líneas moderadas de hidrógeno. Como las estrellas O y B tienen tanta masa consumen su energía mucho más deprisa que otras estrellas más pequeñas liberando cantidades inmensas de energía y viviendo durante un corto periodo de tiempo de unos millones de años. En este tiempo no pueden alejarse demasiado de las regiones de formación estelar en las que nacen por lo que suelen presentarse en grupos de varias estrellas en lo que se conoce como asociaciones OB1, formadas en el interior de nubes moleculares gigantes. La asociación OB1 de Orión es el ejemplo más cercano.
  • Clase A: Son las estrellas más comunes que observamos a simple vista. Deneb en el Cisne es una estrella de gran brillo mientras que Sirio, la estrella más brillante desde la Tierra es también una estrella de tipo A muy cercana pero no tan grande como Deneb. Las estrellas de clase A tienen pronunciadas líneas de Balmer de hidrógeno y poseen también líneas de metales ionizados.
  • Clase F: Siguen siendo estrellas de gran masa y muy brillantes pero pertenecen ya a la secuencia principal. Como ejemplo podemos considerar Fomalhaut en Piscis Australis. Sus espectros se caracterizan por líneas de Balmer de hidrógeno débiles y metales ionizados. Son de color blanco con un ligero componente amarillo.
  • Clase G: Son las mejor conocidas ya que nuestro Sol pertenece a esta clase siendo una estrella de tipo G2. Tienen líneas de hidrógeno aún más débiles que las F y cuentan con líneas de metales ionizados y neutros.
  • Clase K: Estrellas naranja algo más frías que el Sol. Algunas de elllas son gigantes e incluso supergigantes como Antares, mientras que otras estrellas K como Alpha Centauri B pertenecen a la secuencia principal. Tienen líneas de hidrógeno muy débiles y en ocasiones algunas líneas correspondientes a metales neutros.
  • Clase M: Es la más común de todas por el número de estrellas. Todas las enanas rojas pertenecen a esta clase y más del 90% de todas las estrellas son de este tipo como Próxima Centauri. La clase M también corresponde a la mayoría de las gigantes y a algunas supergigantes como Arcturus y Betelgeuse, así como a las variables Mira. El espectro de una estrella M tiene líneas moléculas y de metales neutros pero normalmente no muestra líneas de hidrógeno. El óxido de Titanio puede formar líneas intensas en las estrellas M.

Nuevos tipos espectrales

Más recientemente la clasificación ha sido extendida con nuevos tipos espectrales resultando en la secuencia W O B A F G K M L T y R N C S donde W son estrellas de Wolf-Rayet, L y T representan estrellas extremadamente frías y de poca masa del tipo de las enanas marrones y RNC y S que son utilizadas para clasificar estrellas ricas en carbono.

  • W: Más de 70.000 K – Estrellas de Wolf-Rayet. Estas estrellas superluminosas son muy distintas a otros tipos estelares por mostrar grandes cantidades helio. Se considera que son grandes supergigantes en el final de sus vidas con su capa de hidrógeno exterior expulsada por el fuerte viento estelar causado a tan altas temperaturas. Por este motivo dejan expuesto su núcleo rico en helio.
  • L: 1500 – 2000 K – Estrellas con masa insuficiente para desarrollar reacciones nucleares. Son enanas marrones, estrellas de poca masa incapaces de producir reacciones termonucleares de hidrógeno y que conservan intacto el litio que es destruido por reacciones termonucleares en estrellas mayores (L proviene de hecho del litio presente en estas estrellas). Estas estrellas son tan frías que emiten en el infrarrojo cercano.
  • T: 1000 K – Se trata de estrellas T Tauri, muy jóvenes y de baja masa, algunas a temperaturas tan frías como 600 K. Se trata muy probablemente de estrellas de baja masa en proceso de formación y suelen estar rodeadas de discos de acreción.
  • C: estrellas de carbono. Se subdividen en los siguientes tipos: R, N y S. Se trata de gigantes rojas en el final de sus vidas.
  • D: Enanas blancas, por ejemplo Sirio B. La mayoría de las estrellas terminan sus vidas perteneciendo a este tipo.

Clasificación por clases de luminosidad

En la década de 1940 se inició un nuevo proyecto de clasificación complementaria en el Observatorio de Yerkes. Se trataba de una clasificación basada en líneas espectrales sensibles a la gravedad estelar e introducida en el año 1943 por William W. Morgan, Phillip C. Keenan y Edith Kellman, razón por la que en ocasiones se le conoce también como clasificación de Morgan Keenan Kellman o simplemente MKK.

Al utilizarse líneas espectrales sensibles a la gravedad de la superficie se obtiene información sobre la densidad de las estrellas. Como el radio de una estrella gigante es muy superior al de una enana blanca de la misma masa, la gravedad es muy diferente manifestántose en la intensidad y en la forma de las líneas espectrales. Esta clasificación no sustituye a la anterior sino que la complementa.

Del mismo modo el observatorio Yerkes propuso una subdivisión de la clasificación de Harvard utilizando subíndices, por ejemplo, de la A1 a la A9. De este modo y utilizando ambos sistemas de clasificación es posible afinar en el tipo espectral.

Se distinguen las siguientes clases de luminosidad:

 

ClaseDescripción
IaSupergigante muy luminosa
IbSupergigante de menor brillo
IIGigantes luminosas
IIIGigantes
IVSub-gigantes
VEstrellas enanas de la secuencia principal
VISub enanas (poco utilizada)
VIIEnanas blancas (poco utilizada)