Álgebra lineal

El álgebra lineal es la rama de la matemática que concierne al estudio de vectores, espacios vectoriales, transformaciones lineales, y sistemas de ecuaciones lineales. Los espacios vectoriales son un tema central en la matemática moderna; por lo que el álgebra lineal es usada ampliamente en álgebra abstracta y análisis funcional. El álgebra lineal tiene una representación concreta en la geometría analítica, y tiene aplicaciones en el campo de las ciencias naturales y en las ciencias sociales.

Historia

La historia del álgebra lineal moderna se remonta a los años 1843 y 1844.

En 1843, William Rowan Hamilton (de quien proviene el uso del término vector) creó los cuaterniones.

En 1844, Hermann Grassmann publicó su libro Die lineare Ausdehnungslehre.

Introducción Elemental

El álgebra lineal tiene sus orígenes en el estudio de los vectores en el plano y en el espacio tridimensional cartesiano. Aquí, un vector es un segmento, caracterizado por su longitud (o magnitud) y dirección. Los vectores pueden entonces utilizarse para representar ciertas magnitudes físicas, como las fuerzas, pueden sumarse y ser multiplicados por escalares, formando entonces el primer ejemplo de espacio vectorial real.

Hoy día, el álgebra lineal se ha extendido para considerar espacios de dimensión arbitraria o incluso de dimensión infinita. Un espacio vectorial de dimensión n se dice que es n-dimensional. La mayoría de los resultados encontrados en 2 y 3 dimensiones pueden extenderse al caso n-dimensional. A mucha gente le resulta imposible la visualización mental de los vectores de más de tres dimensiones (o incluso los tridimensionales). Pero los vectores de un espacio n-dimensional pueden ser útiles para representar información: considerados como n-tuplas, es decir, listas ordenadas de n componentes, pueden utilizarse para resumir y manipular información eficientemente. Por ejemplo, en economía, se pueden crear y usar vectores octo-dimensionales u 8-tuplas para representar el Producto Interno Bruto de 8 países diferentes. Se puede simplemente mostrar el PIB en un año en particular, en donde se especifica el orden que se desea, por ejemplo, (Estados Unidos, Reino Unido, Francia, Alemania, España, India, Japón, Australia), utilizando un vector (v1, v2, v3, v4, v5, v6, v7, v8) en donde el PIB de cada país está en su respectiva posición.

Un espacio vectorial (o espacio lineal), como concepto puramente abstracto en el que podemos probar teoremas, es parte del álgebra abstracta, y está bien integrado en ella. Por ejemplo, con la operación de composición, el conjunto de aplicaciones lineales de un espacio vectorial en sí mismo (endomorfismos) tiene estructura de anillo, y el subconjunto de las aplicaciones lineales que son invertibles (los automorfismos) tiene estructura de grupo. El Álgebra Lineal también tiene un papel importante en el cálculo, sobre todo en la descripción de derivadas de orden superior en el análisis vectorial y en el estudio del producto tensorial (en física, buscar momentos de torsión) y de las aplicaciones antisimétricas.

Un espacio vectorial se define sobre un cuerpo, tal como el de los números reales o en el de los números complejos. Una aplicación (u operador) lineal hace corresponder los vectores de un espacio vectorial con los de otro (o de él mismo), de forma compatible con la suma o adición y la multiplicación por un escalar definidos en ellos. Elegida una base de un espacio vectorial, cada aplicación lineal puede ser representada por una tabla de números llamada matriz. El estudio detallado de las propiedades de las matrices y los algoritmos aplicados a las mismas, incluyendo los determinantes y autovectores, se consideran parte del álgebra lineal.

En matemática los problemas lineales, aquellos que exhiben linealidad en su comportamiento, por lo general pueden resolverse. Por ejemplo, en el cálculo diferencial se trabaja con una aproximación lineal a funciones. La distinción entre problemas lineales y no lineales es muy importante en la práctica.

Algunos Teoremas Útiles

  • Todo espacio lineal tiene una base (Esta afirmación es lógicamente equivalente al Axioma de elección)
  • Una matriz A no nula con n filas y n columnas es no singular (invertible) si existe una matriz B que satisface AB = BA = I donde I es la matriz identidad.
  • Una matriz es invertible si y solo si su determinante es distinto de cero.
  • Una matriz es invertible si y solo si la transformación lineal representada por la matriz es un isomorfismo (vea también matriz invertible para otras afirmaciones equivalentes)
  • Una matriz es positiva semidefinida si y solo si cada uno de sus valores propios son mayores o iguales a cero
  • Una matriz es positiva definida si y solo si cada uno de sus valores propios son mayores a cero.

Generalización y temas relacionados

Puesto que el álgebra lineal es una teoría exitosa, sus métodos se han desarrollado por otras áreas de la matemática: en la teoría del módulo, que remplaza al campo en los escalares por un anillo; en el álgebra multilineal, uno lidia con ‘múltiples variables’ en un problema de mapeo lineal, en el que cada número de las diferentes variables se dirige al concepto de tensor; en la teoría del espectro de los operadores de control de matrices infi-dimensionales, aplicando el análisis matemático en una teoría que no es puramente algebraica. En todos estos casos las dificultades técnicas son mucho más grandes.