Teoría científica de la evolución
La síntesis moderna, al igual que sus antecedentes el darwinismo y la genética mendeliana, es una teoría científica. La evolución biológica es un fenómeno natural real, observable y comprobable empíricamente. Son las explicaciones o modelación conceptuales de los mecanismos y procesos que intervienen, los que conforman la teoría evolutiva moderna, llamada síntesis moderna de la evolución. Como cualquier teoría científica, el componente especulativo esta sujeto a la verificación y falseo de hipótesis; pero en las ciencias biológicas actuales, la síntesis moderna es la teoría más robusta para explicar fenómenos evolutivos como la variación y la especiación.
La síntesis moderna de la evolución se basa en tres aspectos fundamentales:
- La ascendencia común de todos los organismos de un único ancestro.
- El origen de nuevos caracteres en un linaje evolutivo.
- Los mecanismos por los que algunos caracteres persisten mientras que otros desaparecen.
Ascendencia común
Se dice que un grupo de organismos tienen ascendencia común cuando tienen un ancestro común. En biología, se considera un hecho que todos los organismos de la tierra descienden de un ancestro común o de un recurso genético común (aunque se sospecha que la vida pudo haber surgido como mucho, alrededor de unas 10 veces en el curso de la historia, esto no elimina la posibilidad de que todas las formas de vida que hoy conocemos desciendan de un ancestro común único; ya que esto depende mayormente de las capacidades replicativas diferenciales de esos primeros organismos).
La evidencia de un ancestro común puede encontrarse en las características compartidas entre todos los organismos vivientes. En la época de Darwin, sólo se podía encontrar evidencia de características compartidas por observación de similitudes en la morfología tales como el hecho de que todas las aves — aún aquellas que no vuelan — tienen alas. Actualmente, la teoría de la evolución ha encontrado evidencia que la respalda debido al estudio del ADN por parte de otra rama de la ciencia como es la genética. Por ejemplo, todos los seres vivientes utilizan ácidos nucleicos como su material genético y adicionalmente utilizan los mismos veinte aminoácidos como las piezas de construcción para las proteínas. Todos los organismos utilizan el mismo código genético (con algunas derivaciones extremadamente raras y menores) para traducir secuencias de ácidos nucleicos a proteínas. Debido a que la selección de estas características es arbitraria, su universalidad es fuerte evidencia en respaldo a la teoría del origen común para todos los seres vivientes.
Adicionalmente, la abiogénesis — generación de la vida a partir de materia inerte — nunca ha sido observada, indicando que el origen de la vida a partir de componentes no vivos es o bien extremadamente raro, o sólo ocurre bajo condiciones muy diferentes de las que tiene la Tierra en la actualidad. A pesar de todo, el experimento de Miller-Urey en 1953 sugirió que la abiogénesis era posible en las condiciones primordiales.
Dado que la abiogénesis es rara o imposible en las condiciones actuales y el proceso evolutivo es extremadamente lento, la diversidad y complejidad de la vida moderna requiere que la Tierra tenga miles de millones de años de edad. Esto es compatible con la evidencia geológica que indica que la Tierra tiene aproximadamente 4.600 millones de años (Véase cronología de la evolución).
La información sobre el desarrollo del inicio de la vida incluye datos de las áreas de geología y ciencia planetaria. Estas ciencias proveen información sobre la historia de la Tierra y los cambios producidos en ella por la existencia de vida. Gran cantidad de información sobre las primeras etapas de la Tierra han sido destruidos debido a procesos geológicos ocurridos desde entonces.
Evidencia morfológica
Los fósiles son importantes para estimar cuándo se desarrollaron varios linajes. Como la fosilización es infrecuente, ya que usualmente requiere que se depositen partes duras (como huesos) y se produzca la muerte cerca a un sitio donde se estén depositando sedimentos, el registro fósil solo proporciona información disgregada e intermitente sobre la evolución de la vida. La evidencia fósil de esa vida está esparcida antes de la evolución de los organismos con partes corporales duras, como las conchas, los huesos y los dientes, pero existe en forma de antiguos microfósiles, y la fosilización de viejas madrigueras y algunos pocos organismos de cuerpo blando.
No obstante, se ha encontrado evidencia fósil de organismos prehistóricos a lo largo y ancho de la Tierra. La edad de los fósiles suele poder deducirse del contexto geológico en el cual se encontraron; y su edad absoluta se puede verificar con radiometría. Algunos fósiles se parecen a organismos actuales, mientras que otros son radicalmente diferentes. Los fósiles se han usado para determinar en qué momento se desarrolló un linaje, y puede usarse para demostrar la continuidad entre dos linajes diferentes a través de los «fósiles transicionales». La paleontología investiga la evolución en su mayoría a través del análisis de los fósiles.
La filogenia, el estudio de la ascendencia de las especies, ha revelado que las estructuras con similar organización interna pueden desempeñar funciones divergentes. Las extremidades de los vertebrados son un ejemplo común de esas «estructuras homólogas». Un órgano o estructura vestigial puede existir con propósitos limitados o inexistentes en un organismo, pero con un propósito claro en otro. Las muelas del juicio y el apéndice vermiforme de los humanos son ejemplos comunes (a pesar de que, en este último caso, se sabe que posee funciones relacionadas con el sistema inmune, si bien no es indispensable).
Evidencia genética
La comparación de secuencias génicas revela que los organismos filogenéticamente cercanos poseen un mayor grado de similaridad de secuencia que los filogenéticamente distantes. Por ejemplo, se observa aproximadamente un 1,2% de divergencia (basada en sustituciones) entre secuencias de ADN humano neutras y las del pariente vivo más cercano de la especie Homo sapiens, es decir, el chimpancé; mientras que la cifra es de un 1.6% comparándolas con las del gorila y un 6.6% para el babuino. La comparación de secuencias está considerada una medida tan robusta que con frecuencia se utiliza para corregir errores en el árbol filogenético, en casos donde escasean otro tipo de evidencias.
Por otra parte, existe otra fuente de evidencia para la descendencia común, proveniente de lo que se han llamado relictos génicos . Los pseudogenes son regiones de ADN homólogas con respecto a un gen de un organismo relacionado, pero que han dejado de ser activas y parecen estar sujetas a un proceso continuado de degeneración.
Dado que los procesos metabólicos no dejan fósiles, la investigación en torno a la evolución de los procesos celulares básicos es realizada por medio de comparaciones entre organismos actuales. Numerosos linajes han divergido en diferentes estadios de desarrollo, de modo que se hace teóricamente posible determinar en qué momento aparecieron ciertos procesos metabólicos mediante la comparación entre rasgos de los descendientes de un ancestro común.
El origen de la vida
El origen de la vida no tiene nada que ver con la teoría de evolución, pues ésta sólo se ocupa del cambio en los seres vivos que ya han surgido. No se sabe mucho sobre las etapas más tempranas del desarrollo de la vida. Sin embargo, todos los organismos existentes comparten ciertas características, incluyendo la estructura celular y el código genético (Para los científicos que consideran a los virus como seres vivos, si bien los mismos no tienen una estructura celular, evolucionaron a partir de organismos que sí las poseían, probablemente comportándose originalmente como transposones). La mayoría de los científicos interpretan estas semejanzas como evidencia de que todos los organismos existentes comparten un ancestro común, el cual ya había desarrollado los procesos celulares más fundamentales, pero no hay acuerdo en la comunidad científica sobre la relación de los tres dominios de la vida (Archaea, Bacteria, Eukaryota) o sobre el origen de la vida. Los intentos realizados para tratar de desvelar la historia más temprana de la vida, generalmente se enfoca en el comportamiento de las macromoléculas, particularmente el ARN, y el comportamiento de sistemas complejos.
A pesar de que los orígenes de la vida nos son todavía desconocidos, otros hitos en la historia evolutiva de la vida son bien sabidos. La aparición de la fotosíntesis oxigénica (hace alrededor de 3000 millones de años) y el posterior surgimiento de una atmósfera rica en oxígeno y no reductora, puede rastrearse a través de depósitos laminares de hierro, y bandas rojas posteriores producto de los óxidos de hierro. Éste fue un pre-requisito necesario para el desarrollo de la respiración celular aeróbica, la cual se cree que emergió hace aproximadamente 2000 millones de años. En los últimos mil millones de años, organismos pluricelulares simples, tanto plantas como animales, comenzaron a aparecer en los océanos. Poco después del surgimiento de los primeros animales, la explosión Cámbrica (un período breve de diversificación animal sin paralelo y remarcable, documentado en los fósiles encontrados en los sedimentos en Burgess Shale vio la creación de la mayoría de los bauplans, o plan tipo, de los animales modernos. Hace alrededor de 500 millones de años, las plantas y hongos colonizaron la tierra, y fueron seguidos rápidamente por los artrópodos y otros animales, llevando al desarrollo de los ecosistemas terrestres con los que estamos familiarizados.